
version 0.5
February 26th, 2004

L2 Processor Controls and Interfaces

Kristian Hahn, Joe Kroll, Chris Neu, Paul Keener,
Rick Van Berg, Peter Wittich, Daniel Whiteson

University of Pennsylvania

Abstract

A description of the architecture of the L2 processor nodes is given and the
interfaces between the components is specified.

2 2 REQUIREMENTS

1 Introduction

2 Requirements

The L2 processing system must meet the following requirements with respect to mon-
itoring and control:

2.1 L2 Processor Requirements

• monitoring should not be intrusive

• errors should be reported quickly

2.2 Run Control Requirements

The system should respond to the following commands from Run Control

• Partition
The system will join the specified partition and listen only to commands from
that partition until released. Acknowledgement or error report required.

• Configure
The system will receive configuration information from RunControl, in the form of
information from the Run, Trigger, or Hardware Databases. It will configure the
nodes for event processing and respond with success or failure. Acknowledgement
or error report required.

• Activate or Run
The system will prepare for data-taking. Acknowledgement or error report re-
quired.

• Halt
The system will halt processing events. Acknowledgement or error report re-
quired.

• Recover
The system will flush events from the system and reset all queues. Acknowledge-
ment or error report required.

• End
The system will cease processing events. Acknowledgement or error report re-
quired.

• Reset
The system is released from the specified partition. Acknowledgement or error
report required.

2.3 Monitoring Requirements 3

2.3 Monitoring Requirements

The system will maintain and provide access to the following monitoring information,
both on demand and on a regular basis.

For each node:

• CPU and memory usage for algorithm and IO

• Per trigger and total algorithm time

• Per trigger and total unpacking time

• Interrupt counts

• Ethernet statistics

• Disk usage

• Event size

• Number of trigger objects

• CPU and device IDs

• uptime

For the system:

• L1 Accept rate per trigger

• L2 Accept rate per trigger

• Number of filled buffers

3 System Architecture

3.1 T.E.D.

The architecture of the system is depicted in Figure 1; the individual processing nodes
are isolated from the interface to the data acquisition system and from monitoring
infrastructure by the Trigger Evaluator Director (TED). The functions of TED are
separated into pieces which divide the task into the overall control and interface to
external components:

4 3 SYSTEM ARCHITECTURE

• Run Control Client: The RCC will communicate with Run Control, translat-
ing its requests into appropriate L2 actions, and indicating the status of the L2
nodes.

• L2 Node Controller: The L2NC will issue commands to the L2 nodes, in-
cluding requests for configuration, changes to processing modes and requests for
monitoring data. Ine L2NC will handle communication with exactly one node.

• L2 Node Monitor: The L2NM will recieve monitoring data from the L2 Nodes.
One L2NM will handle communication with exactly one node.

• L2 Monitor Server: The L2MS will allow access via a Monitoring GUI to the
gathered monitoring information.

• Central Control: The Central Controller will own the above interfaces, and
determine what actions to take in response to commands from external compo-
nents.

Figure 1: Communcation between pieces of the T.E.D, and their communication with
outside components. Looped-back arrows indicate synchronous control which waits for
an indication of success or failure; straight arrows indicate asynchronous data flow.

3.2 L2 Processors

Figure 2 depicts the division of tasks on the L2 processor nodes. Components shown

3.2 L2 Processors 5

in the diagram are described below.

• NodeAlgo : This process deals with the evaluation of the trigger algorithms as
well as S-LINK I/O.

• NodeMonitor : The NM gathers hardware information from the system and
monitoring data from NodeAlgo, packages it and sends it to T.E.D.

• NodeController : The NC receives configuration, processing and monitoring
commands from the L2NC on T.E.D. The interperted commands guide NC’s
control of NodeAlgo and NodeMonitor.

Figure 2: L2 node Flow Control This figure depicts the funcional blocks that op-
erate on the L2 nodes. Solid and hashed bordered arrows represent synchronous and
asynchronous operations, respectively. Filled grey arrows imply external communica-
tion with T.E.D. The single-headed arrows shown point from initiator to target but
information, such as acknowlgements and requested data, will also flow in the counter
direction.

6 4 T.E.D. CONTROL FLOW

4 T.E.D. Control Flow

T.E.D. is driven by its response to external asynchronous events; it acts as a central
communication point, translating requests from one piece of the system into actions
by other pieces.

The pieces of the system which interact with external components (Interface Com-
ponents) operate asynchronously; external events may occur at any time and at any
rate. The Central Control is a fairly simple object, which provides a set of routines
which the Interface Components may call when an external event is detected. In this
way, these routines provide an interface by which incoming messages could be trans-
lated into actions; it defines the response of the system to messages from external
components.

4.1 Synchronous Control

RunControl Client

The RunControl Client listens for instructions from Run Control; when one arrives,
the RCC is required to communicate its success or failure to RunControl. During the
execution of the command, no further RC commands will be seen. Therefore, the RCC
client may execute these commands synchronously, waiting to report their completion
and status before listening for new commands. The RCC’s interface to the Central
Control will be as follows:

• bool CentralControl::Configure(ConfigSpec);

Send configuration information to the nodes. For example, ConfigurationData
may contain the version of the trigger table and the set of prescales. Return value
indicates success or failure.

• bool CentralControl::Activate();

Indicate to the nodes that they should be prepared for data to arrive. Return
value indicates success or failure.

• bool CentralControl::Run();

Prepare for data. Return value indicates success or failure.

• bool CentralControl::Recover();

Flush the system of data and reset all queues. Return value indicates success or
failure.

• bool CentralControl::Halt();

Stop processing data. Return value indicates success or failure.

• bool CentralControl::End();

The run has ended. Return value indicates success or failure.

4.2 Asynchronous Control 7

L2 Node Controller

The L2 Node Controller issues instructions to the nodes; it waits to receive an acknowl-
edgement from the nodes that the command has been successfully executed, though
it does not retrieve any data nor wait for any further information. If data is sent to
T.E.D. in response, it is passed via the L2 Node Monitor.

• bool L2NodeController::Configure(ConfigData);

Instructs the node to configure; return result indicates success or failer

• bool L2NodeController::GoThirsty();

Instructs the node to prepare for data; return result indicates success or failer

• bool L2NodeController::GoDrunk();

Instructs the node to ignore further data; return result indicates success or failer

• bool L2NodeController::Flush();

Instructs the node to discard data and clear queues; return result indicates success
or failer

• bool L2NodeController::RequestMonitoringData()

Instructs the node to send updated monitoring data at its next opportunity;
return result indicats success or failure.

L2 Monitor Server

The L2 Monitor Server listens for requests for updated monitoring data from an exter-
nal interface. It makes a request to the Central Control, waiting to hear an acknowl-
edgement that the request was successfully transmitted. The monitoring data, however,
is returned asynchronously, at the next available opportunity. The L2 Monitor Server
makes use of the following interface to Central Control:

• bool CentralControl::UpdateMonitoringData();

Request updated monitoring information from nodes at next opportunity.

4.2 Asynchronous Control

Monitoring and status information from the nodes passes to T.E.D. in an asynchronous
manner; the nodes may report a processing error which requires resetting the system
(issuing an HRR), or they may simply send monitoring statistics, a low priority task
in comparison to data processing.

8 5 NODE CONTROL FLOW

Central Control

The Central Control will pass monitoring data from the L2 Node Monitor to the L2
Monitoring Server when it arrives from the nodes:

• bool CentralControl::StoreMonitoringData(NodeID, RunID, MonData);

Receive new monitoring data

• bool L2MonitorServer::StoreMonitoringData(NodeID, RunID, MonData);

Receive new monitoring data

RunControl

If one of the nodes reports an error, seen via the L2MonitorServer, Central Control
will indicate to the RCC to send an error to Run Control:

• bool RunControlClient::L2Error(EventID, RunID);

Report an error

5 Node Control Flow

The evaluation of L2 trigger algorithms is the central process on the L2 nodes. The
control and monitoring of this process is directed by T.E.D. through its L2 Node
Controller and L2 Node Monitor interfaces. Corresponding interfaces exist on the L2
nodes (NodeControl & NodeMonitor) and establish a communication channel with
T.E.D. External communication with T.E.D. and error condtitons on the nodes occur
asynchronously. The flow of control initiated by these asynchronous events may be
classifed as etiher synchronous or asynchronous. Sections 5.1 and 5.2 describe and
categorize the interface functions used in the communication between processes on the
nodes.

5.1 Synchronous Operations

NodeController

The synchronous operation of the L2NC on T.E.D. allows a node’s NC to respond
to single instructions from the L2NC before considering the next. The interface func-
tions available to the NC mirror the commands used by the L2NC. Return values
are sent back to the L2NC to indicate the sucessful or unsucessful completion of the
command.

• bool NodeAlgo::configureAlgo(AlgoConfigSpec), (1)
Configuration data, such as prescales and trigger table information, is passed to
NodeAlgo.

5.2 Asynchronous Operations 9

• bool NodeAlgo::setAlgoThirsty(), (1)
NodeAlgo is told to prepare for the arrival of data.

• bool NodeAlgo::setAlgoDrunk(), (1)
NodeAlgo is told to ignore further data.

• bool NodeAlgo::flush(), (1)
NodeAlgo is told to discard the current event and clear any queued information.

• bool NodeMonitor::configureMonitoring(MonConfigSpec), (2)
Configuration data, such as sampling rate and ROI, is passed to NodeMonitor.

• bool NodeMonitor::requestMonitoringData(), (2)
Request that monitoring data from NodeMonitor be sent right away.

5.2 Asynchronous Operations

NodeMonitor

One of NodeMonitor’s tasks is to collect profiling information from NodeAlgo. This
operation is asynchronous so that NodeMonitor can perform its other duties (fetching
HW statistics, formatting data, etc.) while it waits for information from NodeAlgo
to arrive.

• bool NodeAlgo::getAlgoInfo(MonSpec), (3)
Request monitoring infomation from NodeAlgo. The information arrives when it
becomes available.

NodeAlgo

NodeAlgo passes profiling data to NodeMonitor as it becomes available. Information
pertaining to errors is sent as they occur.

• bool NodeMonitor::setAlgoInfo(MonData), (3)
This routine returns monitoring data to NodeMonitor in repsonse to a getAlgoInfo
call.

• bool NodeMonitor::sendError(ErrData), (4)
This routine delivers error information to NodeMonitor for delivery to T.E.D

10 6 DATA SYNCHRONIZATION ON THE L2 PROCESSORS

6 Data Synchronization on the L2 Processors

6.1 Motivation

The NodeAlgo process on the L2 nodes will generate algorithm monitoring data that
is read by the NodeMonitor logical processes. NodeMonitor packages this data and
transmits it to the L2NM interface on T.E.D., as described in section 5. NodeAlgo
will pass monitoring infomration to NodeMonitor through shared memory segments.
Access to these shared regions must be synchronized so as to ensure the integrity of
the data contained within. As mentioned in section 2.1, the process of monitoring
the algorithms is required to introduce only minimal overhead to the operation of
NodeAlgo. The mechanism used to establish data synchronization between NodeAlgo
and NodeMonitor must also respect this constraint.

NodeAlgo and ModeMonitor represent logical tasks, ie: tasks that do not neces-
sarily correspond directly with heavy-weight Linux processes or threads of execution.
The function of NodeMonitor, for instance, may be performed by a process that also
performs other tasks, such as that of NodeControl. The distinction between logical
and actual processes is important for NodeMonitor but less so for NodeAlgo. It is clear
that the high-priority operations of NodeAlgo are best handled by a thread(s) that
is not encumbered by any other task. In the text that follows we describe a model
for the synchronization of memory accesses between the two threads that implement
NodeAlgo and NodeMonitor but the reader should bear in mind that the NodeMonitor
thread may also be charged with additional responsibilities.

6.2 Reader & Writer Mutexes

Our preferred approach to the synchronization of data between NodeAlgo and Node-
Monitor involves posix mutexes (mutual exclusion devices). Mutexes have two states,
locked and unlocked, and can be used to allow single agent access to a protected re-
source. Locking and unlocking a mutex are ”atomic” operations and guaruntee that a
thread which has locked a mutex is the only thread to have done so. A more complete
description of posix threads and mutexes may be found in Nichols, et. al [1].

Access to shared memory resources will be synchronized with two mutexes, as shown
in Figure 3. In the course of performing the L2 trigger algorithms NodeAlgo will collect
information on events at a specified rate. When NodeAlgo completes the collection of
information for a given event it will lock the writer mutex (A) before writing the
information to memory (B). The lock will temporarily prevent future access to the
shared memory region by NodeAlgo while the already locked reader mutex prevents
accesses by NodeMonitor. NodeAlgo finishes writing data and unlocks the reader mutex
(C), permitting NodeMonitor to access the data. NodeMonitor is now able to lock the
reader mutex (D) and read the monitoring data (E). When finished, NodeMonitor
unlocks the writer mutex (F), granting NodeAlgo access to shared memory, and the
process begins anew (G).

6.2 Reader & Writer Mutexes 11

Figure 3: Access to memory shared between the NodeAlgo and NodeMonitor logical
processes is synchronized using reader and writer mutexes, depicted here as the circles
labeled ”R” & ”W”. Locked mutxes and memory containing valid data are filled
with gray. In the process shown NodeAlgo locks the writer mutex, writes monitoring
information to shared memory and unlocks the reader mutex. NodeMonitor then locks
the reader mutex, reads the data and unlocks the writer mutex, permitting NodeAlgo
to access shared memory again.

Attempts by either thread to lock a mutex that it already holds will fail, indicating
that the companion thread is accessing the shared data. NodeAlgo will try to obtain
a lock on the writer mutex once before it goes on to process additional events. It will
attempt to look the mutex again after completeing some specified number of events.

12 REFERENCES

NodeMonitor’s response to locking faliure remains as an implementation decision.

6.3 Timing

Meausurements of the time required to lock and unlock a mutex on a high-priority
thread yield 1.7µs and 1.8µs, respectively. We performed tests using two mutexes and
threads as described above. Details of the measurements are provided in a web page [2].

References

[1] the O’Reilley book

[2] http://www-cdf.fnal.gov/ krisitian/pulsar/sync.html

